Uncertain Random Optimization Models Based on System Reliability
نویسندگان
چکیده
منابع مشابه
Reliability analysis in uncertain random system
Reliability analysis of a system based on probability theory has been widely studied and used. Nevertheless, it sometimes meets with one problem that the components of a system may have only few or even no samples, so that we cannot estimate their probability distributions via statistics. Then reliability analysis of a system based on uncertainty theory has been proposed. However, in a general ...
متن کاملUncertain Networks Optimization Based on Random ADD Algorithm
In order to solve the traditional network optimization problem, the dual gradient descent algorithm is adopted. Although the algorithm can be realized by a distributed method, its convergence rate is slow. Acceleration dual decline algorithm mainly uses the distributed calculation of the approximative Newton step to improve its convergence rate. Due to the uncertainty characteristic of communic...
متن کاملFuzzy Reliability Optimization Models for Redundant Systems
In this paper, a special class of redundancy optimization problem with fuzzy random variables is presented. In this model, fuzzy random lifetimes are considered as basic parameters and the Er-expected of system lifetime is used as a major type of system performance. Then a redundancy optimization problem is formulated as a binary integer programming model. Furthermore, illustrative numerical ex...
متن کاملReliability Assessment Based on Degradation Modeling with Random or Uncertain Failure Threshold
This paper developed extensions to the existing research so that reliability assessment based on degradation modeling can address new problem domains that previously did not meet the required assumptions and modeling constraints. Degradation modeling is based on probabilistic modeling of a failure mechanism degradation path and comparison of a projected distribution to a pre-defined failure thr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computational Intelligence Systems
سال: 2020
ISSN: 1875-6883
DOI: 10.2991/ijcis.d.200915.002